

Resist Materials II

- Resolution
 - Aerial Image
 - Dose latitude
 - Statistical considerations
 - Sensitivity Limits
 - Energy Deposition Distribution
 - Beam broadening
 - Energy and chemistry
 - Development
 - Diffusion in CA materials
 - Line edge roughness
 - Limits to resolution

Resolution – Aerial Image

20 nm isolated feature

20 nm lines & spaces

- The **aerial image** represents the intensity distribution that can be formed by a lithography system
 - Refers to energy distribution immediately above the resist surface, before any interaction with resist or substrate
- Aerial image resolution affects printable feature size
 - Modulation falls to ≈ zero when $\sigma > \sqrt{2Ln2}$ feature size

Dose Latitude

- Robust process requires dose latitude (Δ Dose $\pm 10\%\Delta$ CD) > 10%
- \triangleright Blur (σ) < 20% CD

Resolution - Statistics I

- High sensitivity > small numbers of electrons
- Exposure statistics can lead to large variations in feature size

Resolution - Statistics II

- Simple calculation: each electron exposes cylinder of material
 - Resolution = mean separation between electrons, δ
 - $-1 \mu C/cm^2 > \delta = 4 nm$
- Electrons in a bucket: probability feature fails to print < 10⁻¹⁵
 - Feature fails to print if dose is <0.5 dose to print on size
 - Probability is < 10⁻¹⁵ when number of electrons > 200
 - Dose = $8 \mu C/cm^2$ for 20 nm features
- Signal to noise: $\sqrt{N/N} < X\%$ what is X?

Shot-noise - Poisson Statistics

Total Area A

Sub Area a

Let Intensity = defocus tophat in projection electron system 35nm diameter and 4μ C/cm²

 \Rightarrow IAt = 250 electrons

(Nominal dose to print on size = 2 x dose to clear)

Area Fraction: a/A

Log of the
Probability
to get n
particles in
the given
area fraction - 12

Chance of getting \leq half (Nominal Dose) is \leq 10⁻¹⁵, i.e. features will always print & dose is relatively uniform

Missing Via

This is what a missing via looks like.

- In this case it mostly likely results from chemical contamination.

Observed Resolution vs Dose

$$N = \frac{Dose \cdot L^2}{e} \Rightarrow L = \sqrt{\frac{eN}{Dose}}$$

- Key assumptions:
 - Arrival statisticschemistry
 - No other sources of blur
- CA materials PAG = 5%
 - PAG "scavenges" electrons
- Blur from aerial image, electron resist/substrate interactions, chemistry

$$\sigma_{total} = \sqrt{\sigma_{image}^2 + \sigma_{chemistry}^2 + \sigma_{scattering}^2 + \sigma_{statistics}^2}$$

Advanced Resist Results

100 kV SCALPEL exposures

 $80 \text{ nm}, 5.8 \ \mu\text{C/cm}^2$ $80 \text{ nm}, 5.8 \ \mu\text{C/cm}^2$ $100 \text{ nm}, 5.4 \ \mu\text{C/cm}^2$

5.4 μ C/cm² @ 100 nm feature size = 3375 electrons/100 nm pixel, $\sqrt{N/N} = 1.72\%$

Energy Deposition I

 Of the four different kinds of scattering events only two - excitation & ionization - result in chemical changes

Energy Deposition II

- Excitation events are low energy and thus have large cross-sections, i.e. are substantially delocalized
- Secondary electrons also result in a substantial broadening of deposited energy profile

Energy Deposition vs Acid Generation in CA Materials

- Energy absorption process produces an ionized molecule, typically from the base resin
 - $RH \xrightarrow{h\nu} RH_{\bullet}^{+} + e^{-}, RH_{\bullet}^{+} + e^{-} \longrightarrow RH^{*}$
 - In a non-polar material, electrons can recombine with counter-cation
- Electrons that escape recombination eventually thermalize
- Polar acid generator molecules effectively "scavenge" electrons
 - ➤ Ionization probability for acid generator is, to some extent, decoupled from fraction of PAG molecules
 - ➤ Acid formation occurs some distance (several nm) from site of energy absorption

"Study on Radiation-Induced Reaction in Microscopic Region for Basic Understanding of Electron Beam Patterning in Lithographic Process I - Development of Subpicosecond Pulse Radiolysis and Relation Between Space Resolution and Radiation Induced Reaction of Onium Salt", T. Kozawa, A. Saeki, Y. Yoshida and S. Tagawa, *Jap. J. Appl. Phys.*, **41** p4208 (2002)

"Study on Radiation-Induced Reaction in Microscopic Region for Basic Understanding of Electron Beam Patterning in Lithographic Process II - Relation Between Resist Space Resolution and Space Distribution of Ionic Species", A. Saeki, T. Kozawa, Y. Yoshida and S. Tagawa, *Jap. J. Appl. Phys.*, **41** p4213 (2002)

Energy Deposition Distribution

- At high voltages (100 kV) and in thin (100 nm) resists, forward scattering is 5 10 nm (90% energy contour diameter) at the base of the film
- Exposure is accomplished by secondary electrons which peak in number at 10 eV
 - Mean free paths of a few nanometers
- Even with very finely focused beams resolution is limited by the nature of the electron solid interactions

Monte-Carlo simulation of the energy deposition distribution for 20 nm lines & spaces. δ -function incident beam assumed. 20 μ C/cm² dose.

Chemically Amplified Resists - Diffusion I

- Acid diffusion in CA materials is highly complex:
 - Motion of H⁺ affected by anion and by polar functionalities of resist
 - Diffusion coefficient changes with extent of deprotection reaction
 - Catalytic chain lengths can be > 1000
 - However, diffusion distances can be as small as 5 nm

Chemically Amplified Resists - Diffusion II

- Acid concentration profile formed upon exposure
 diffusion will homogenize distribution
- Reaction-diffusion model accounts for changing diffusion coefficients as deprotection reaction proceeds and material changes from non-polar to polar, for changing deprotection rates as concentration of protecting groups changes and for reduction of acid concentration through various loss mechanisms
 - Diffusion coefficients for TBI-PFBS at 105 °C in PTBOCST: 15 nm²/s (protected), 0.1 nm²/s (deprotected). Smaller PAG anions allow faster diffusion.
 - Deprotection reaction proceeds (slowly) even at low acid concentrations ⇒ blurring
 - Base added to films to reduce acid levels in nominally unexposed areas

$$\frac{\partial C}{\partial t} = -\nabla (D\nabla C)$$
Concentration dependent diffusion

"Chemical and Physical Aspects of the Post-Exposure Baking Process Used for Positive-Tone Chemically Amplified Resists", W.D. Hinsberg, F.A. Houle, M.I. Sanchez and G.M. Wallraff, *IBM J. Res. & Dev.*, **45** p667 (2001)

"Method of Measuring the Spatial Resolution of a Photoresist", J.A. Hoffnagle, W.D. Hinsberg, M.I. Sanchez and F.A. Houle, *Optics Letters*, **27** p1778 (2002)

Statistics of Resist Roughness

Process Flow \Rightarrow **Multiple Statistics**

• <u>Dose Statistics</u>: Probability distribution for

of electrons/"pixel".

Acid Release Statistics: Probability of Acid Release given

presence of an electron.

• <u>PEB Statistics</u>: Probability of deprotection

given Acid Random Walk

Dissolution Rate Statistics: Concatenate above statistics

Deprotection/Acid Density,

Dissolution Rate/Deprotection Density...

<u>Surface Statistics</u>: Compute Surface Evolution

using Rate Statistics

Assume Positive Chemically Amplified Resist Straightforward modification for negative resist

Line Edge Roughness

- Roughness depends directly on dissolution rate
 - Exposure ⊗ Latent Image ⊗ PEB statistics washes out effect of shot-noise
- LER increases with decreasing image edge slope
- Minimum value of roughness is related directly to granularity of resist
 - In conventional materials, the size of a molecule
 - In CA materials, the molecular size or the volume deprotected by an acid molecule during PEB (links resolution and sensitivity)

LER Simulation

• Influence of different stages of image formation process in a chemically amplified resist on the final, developed feature

Step-by-step Image Formation in EP-004 at 3 μC/cm²

Amplification events

Solubility change

Development

Simulated SEM & AFM LER of a Resist Feature

 Simulated SEM image (50% threshold)

Simulated AFM sidewall image

AFM Trace

SEM Trace

• AFM LER (1σ) :

- Simulated: 10.7 nm

Experiment: NA

• SEM LER (1σ) :

- Simulated: 5.7 nm

– <u>Experiment: 3 nm</u>

Performance Limits

- Resolution and sensitivity are strongly coupled
- Resolution is determined by

$$\sigma_{total} = \sqrt{\sigma_{image}^2 + \sigma_{chemistry}^2 + \sigma_{scattering}^2 + \sigma_{statistics}^2}$$

- Image blur can be reduced to 0.5 nm
- Statistical blur can be reduced by going to high doses
- Chemical blur can be reduced by using non-CA materials or curtailing acid diffusion
- Scattering blur can only be reduced by changing the nature of the electron solid interactions
 - High energy processes are localized to the incident beam
 - Hole drilling in inorganic resists
 - Radiation damage in Si0₂

"Resist Requirements and Limitations for Nanoscale Electron Beam Patterning", J.A. Liddle, G.M. Gallatin and L.E. Ocola, Mat. Res. Soc. Symp. Proc. (2002)

"Resolution Limits for Electron-Beam Lithography", A.N. Broers, IBM J. Res. Develop., 32 p502 (1988)

Resolution limitations in chemically amplified photoresist systems

Chemical amplification

Hundreds of solubility conversion reactions per absorbed photon.

General positive-tone function:

Model system:

Intrinsic limitation?

Previous work: FIB exposure

STEM exposure of TBOC photoresist on thin silicon nitride membranes.

Lower dose Smallest feature not resolved

Higher dose Smallest feature resolved

Previous work: FIB exposure

TBOC resolution: ~40 nm in 1988

Line spread function calculation

W. Hinsberg, F. Houle, M. I. Sanchez, J. Hoffnagle, G. Wallraff, D. R. Medeiros, G. Gallatin, and H. Cobb, Proc. SPIE, **2003**.

Calculated using quantitative physically-based, experimentally validated PEB model.

PEB 120 sec, 100 °C

PTBOCST/TBI-PFBS

Interferometric lithography of ESCAP chemically amplified resists

W. Hinsberg, F. Houle, M. I. Sanchez, J. Hoffnagle, G. Wallraff, D. R. Medeiros, G. Gallatin, and H. Cobb, Proc. SPIE, **2003**.

Routes to reduced diffusion bias

- Use lower PEB temperature

 Reduces diffusion rate, also reduces reaction rate
- Add base to formulation to quench diffusing acid "Scavenges" diffusing acid, also scavenges other acid
- Increase size of diffusing acid species

 Reduces diffusion rate, can also limit catalytic efficiency

Diffusion bias measurements

Goal is to measure change in acid distribution due to diffusion

→ Best to start with a well-defined acid distribution

Our approach: Bilayer systems

BILAYER ACID DISTRIBUTION

NO ACID

ACID RICH

FTIR measurements

Measure acid diffusion distance by monitoring the reaction of acid with TBOC polymer.

CXRO

Acid Detector Layer

Acid Source Layer

Al-backed Si wafer

Effect of PEB temperature

→ Reduce PEB temperature, reduce bias

→ Smallest measured diffusion bias is ~25 nm

Effect of added base

→ Increase base loading, decrease bias

→ Smallest measured diffusion bias is ~15 nm

Effect of size of diffusing species

> Increase the size of the acid anion, reduce diffusion

Neutron Reflectivity

1) Spincoated d-tBOC film

2) Coat PHS+PAG layer

3) UV Exposure

4) Bake film stack

5) Develop

Structure of deuterated t-BOC:

- Deuterium-containing group is removed by the deprotection reaction

Real space profiles

Effect of size of diffusing species

Neutron reflectivity measurements

Bilayer film stack with neutron contrast:

d-tBOCSt polymeric PAG

Structure of deuterated t-BOCSt:

 Deuterium-containing group is removed by the deprotection reaction

Structure of polymeric PAG:

- Produces a bound acid molecule

$$CF_2CF_2SO_3^{-1}S-\phi$$

Neutron reflectivity measurements

After a 2 min bake at 90 °C, interfacial width is ~ 19 nm between polymeric PAG layer and TBOC layer.

Conclusions

There is an apparent resolution limit to chemically amplified photoresist systems in the range of ~30-40 nm (minimum diffusion bias of ~15-20 nm).

It appears that the mechanisms responsible for high sensitivity in these resists are intrinsically tied to the processes that result in diffusion-induced bias.

Image blur: Reaction Front

- Active (mobile) acid molecules
- Inactive (immobile) acid molecules

Gradual Depletion of Front

Reaction Front Formation

Origins of Resist Feature Roughness

Mesoscale simulations can be used to study the formulation variables and processing conditions that contribute to photoresist roughness.

Origins of Resist Feature Roughness

For poor exposure contrast, spatial irregularities exist over a larger portion of the line edge, resulting in greater feature roughness.

Gerard: Design of Resist Materials

Imaging mechanisms

"Traditional"

Chain scission – positive tone, CA unzipping

Cross-linking – negative tone

Polarity switch – usually positive tone

Non-traditional

Top surface imaging, silylation, graft polymerization

"Photo-" (for photoresists, different for e-beam resists)

Photochemistry, bleaching

Optical properties, absorbance

"-Resist"

Dry etch resistance, Onishi parameter, hard masks

Mechanical stability

Swelling, aspect ratio – CARC

Environmental stability, shelf life, outgassing, contamination

Process window, pre- and post-exposure delay stability

Manufacturability of resist

Copolymerization vs. additives

Importance of resist contrast

Importance of resist contrast

Projected Intensity Function

Resist Response **Function**

Resist Profile

Resist contrast mechanisms

Liquid development

- differences in molecular weight
- differences in polarity and/or chemical reactivity towards developer

Dry development (RIE)

- differences in dry etch rate

These mechanisms can be used in both positive and negative tone

Positive tone: exposure-induced chain scission

Radiation Induced Decomposition of Poly(Methylmethacrylate), PMMA

OCH₃

$$CH_3$$
 CH_3 CH_3 $CH_2 - C = CH_2 + \cdot C -$ $C -$ C

Chain scission contrast

In general, dissolution rate of polymers is inversely proportional to log(MW)

Extreme case of chain scission resist

* NO₂-Ph-O-C-O-Ph-NO₂ + n HO-C-H₃

$$K_2CO_3$$
 18-Crown-6

$$\begin{pmatrix} CH_3 \\ CH_3 \end{pmatrix}$$

$$\begin{pmatrix}$$

Reaction products are volatile

"Self Development"

This material has very high throughput because it is CA², and requires no development step. Why is it not used?

Negative tone: cross-linking

Louis Minsk Eastman Kodak

The First Synthetic Photopolymer

Poly(vinyl cinnamate)

Single Component Negative Tone

Limited Resolution

$$R = H, CH_3, CI$$

 $X = CI, -CH_2CI$

Two Component Negative Tone

Bis-azide rubber

$$R-N_{3} \xrightarrow{h\nu} R-N: + N_{2}$$
Azide Nitrene + Nitrogen
$$R-N: + R-N: \longrightarrow R-N=N-R$$

$$R-N: + H-C-\longrightarrow R-NH-C-$$

$$R-N: + H-C-\longrightarrow R-NH \cdot + \cdot C-$$

$$R-N: + I-C-\longrightarrow R-N$$

Swelling in negative tone materials

Polarity switching resists

Novolac/DNQ Photoresists

The History of Novolac ——

C.H. Meyer and L.H. Baekeland Discovered Novolac ca. 1900

Baekeland

Meyer

Diazonaphthoquinone-Novolac Resists

$$\begin{array}{c} OH \\ - H_2C = O \\ CH_3 \end{array}$$

Novolak Resin

Polarity switching resists

Side Chain Deprotection Design

Chemical amplification

Hundreds of solubility conversion reactions per absorbed photon.

General positive-tone function:

Model system:

Chemical contamination in CARs

"T" tops

15 min in filtered air

15 min in 10ppb NMP before exposure

Positive Tone Image vs. Delay Time

No Delay

Post Coating Delay

Dry development of resists

Silylation Process

Expose

$$N_2$$
 N_2 N_2

Bake

Silylate

OH OTMS
$$+ [(CH_3)_3Si]_2NH \longrightarrow CH$$

Etch

OTMS
$$O_{2} \longrightarrow CO_{2} + H_{2}O + SiO_{2}$$

$$OH \longrightarrow CO_{2} + H_{2}O$$

$$CO_{2} + H_{2}O$$

$$CO_{2} + H_{2}O$$

Analog Silylation Process

Zero Volume Change Silylation Process

Expose

$$\left[\begin{array}{c} \\ \end{array}\right]_{3} SSbF_{6} \xrightarrow{Hv} HSbF_{6} +$$

Bake

$$\begin{array}{c|c} -CH_2-CH \xrightarrow{}_n & -CH_2-CH \xrightarrow{}_n \\ \hline & \Delta & & \\ OCO_2C(CH_3)_3 & OH & + CO_2 + CH=CH(CH_3)_2 \\ \end{array}$$

Silylate

Etch

$$\begin{array}{c|c}
 & CH_2 - CH^{-1} \\
 & O_2 \\
 & O_2 + H_2O
\end{array}$$

$$\begin{array}{c|c}
 & O_2 \\
 & O_2 + H_2O
\end{array}$$

$$\begin{array}{c|c}
 & O_2 \\
 & O_2 + H_2O
\end{array}$$

$$\begin{array}{c|c}
 & O_2 \\
 & O_2 + H_2O
\end{array}$$

$$\begin{array}{c|c}
 & O_2 \\
 & O_2 \\
 & O_2 + H_2O
\end{array}$$

APEX Resist Design

Etch Resistance

Design of CARs: manufacturability

IBM Version 2 Tetrapolymer

☐ Tethering Function ☐ Acid Lability ☐ Base Solubility

Impact of Photoresist Absorbance on Developed Image Profile

Moderate

High

absorbance

absorbance

